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By expanding the initial equation, it is shown that the Friedman method for estimating the 
activation energy of chemical reactions by using both the conversion and the rate in the 
thermoanalytical data has wide applicability to crystal growth from pre-existing nuclei, diffusion 
and other processes in which a single unit process is involved. 

In 1964 Friedman published a paper describing a method for the kinetic analysis 
of thermogravimetric data [I]: logarithms of the rate of weight loss at different 
heating rates are plotted against the reciprocal absolute temperature at a given 
weight loss to obtain the activation energy, and the mechanism is elucidated from 
the intercept of the plots. The method was applied to data on the thermal 
decomposition of glass fiber-reinforced phenol resin by thermogravimetry (TG). 
The decomposition was found to be a fifth-order reaction, and the activation energy 
and the pre-exponential factor were estimated. Tanabe and Otsuka later applied the 
method to the decomposition of magnesite, observed by differential scanning 
calorimetry (DSC), and they obtained satisfactory results [2]. However, the method 
has not been applied widely, presumably because it needs both the conversion and 
the rate of conversion. 

It has recently become readily possible to calculate the conversion from the 
measured rate of conversion and vice versa with a microcomputer. In particular, the 
conversion can be precisely calculated from the rate. Moreover, the Friedman plot 
has wide applicability other than thermal decompositions by TG and DSC, and it 
has advantages over other methods. The applicability and the advantages are 
described in this short communication. 

As in the TG of random scission in the main chain of a polymeric sample and 
mechanical thermal analysis, the measured quantity in thermal analysis is not 
necessarily equal or proportional to the amount of the reacting species or the 
reacting chemical structure, so that the conversion, C, measured in thermal analysis 
is a function of the amount of the reacting species or the reacting structure, x, as 
follows: 
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C = f ( x )  (1) 

The reaction proceeds in accordance with the usual kinetic formula: 

dt - A e x p  - R - ~  g(x) (2) 

where t, A, AE, R and T are the time, the pre-exponential factor, the activation 
energy, the gas constant and the temperature, respectively. 

Introducing the reduced time, 0 [3, 4], we get 

dx 
dO - Ag(x) (3) 

and 

Therefore, 

- exp - ~ (4) 

dC dC dx dO 

dt dx dO dt 
(5) 

It is clear from Eq. (5) that dC/dx and dx/dO are both constant at a given conversion 
and that dC/dt is proportional to exp ( -  AE/RT). When we plot the logarithm of 
the rate, dC/dt, against the reciprocal absolute temperature at a given conversion, 
we get a linear plot, and the activation energy can be obtained from the slope. When 
the conversion isequal to x, we get Ag(x) from the intercept and we can elucidate 
the mechanism. This method of kinetic analysis is also applicable to various data 
other than TG and DSC data on chemical reactions, if the processes proceed in 
accordance with Eqs (1) and (2). The thermal shrinkage of elongated polymer films 
[5] and mechanical property change by torsional braid analysis [6, 7] are such cases. 

Since Eqs (3), (4) and (5) hold for any temperature change, including isothermal 
cases, this method can be applied to any data obtained isothermally and in any 
temperature change. In thermal analysis, the temperature of the sample usually 
deviates from the programmed temperature due to the endothermic or exothermic 
process under investigations. This deviation may cause some error in a kinetic 
analysis based on the integration of Eq. (2) on the assumption of a linear increase of 
the temperature. However, in the Friedman plot such an assumption, is not 
included, so that its applicability is not limited. Although other kinetic methods, 
such as that of Freeman and Carrol [8], are not based on integration, most of them 
are based on kinetic equations other than Eq. (2), so that their applicability is 
limited and they tend to lead to false results, as has already been discussed 
elsewhere [9]. 
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The Friedman plot can also be applied to crystal growth from pre-existing nuclei, 
for which the following equations hold [10]: 

- In ( 1 - C )  = Z O "  ( 7 )  

where C, Z and m are the crystallized fraction, a constant and an integer equal to 
the dimension of the crystal growth, respectively. 

dC 
dO - mZ~ - C ) O " '  (8) 

where Zo is a constant, and the reduced time, O, Z and Zo are given below: 

0 = S h ( T ) d t  (9) 

Z = gNv~ (1 O) 

and 
Zo = gNv~ -I (1 1) 

where g and Nare, respectively, a constant dependent on the geometrical dimension 
of the crystal growth and the density of the nuclei, and the linear rate of crystal 
growth, v(T), is equal to voh(T ). From Eq. (8: 

dC dC 
- h ( T )  ( 1 2 )  

dt dO 

Since 0 and dC/dO are constant at a given conversion, dC/d t  is proportional to v ( T )  

and reflects its temperature-dependence. Similarly to the chemical reactions 
mentioned above, we can observe the temperature-dependence of the linear growth 
rate of the crystal and we can perform a kinetic analysis as described previously [10]. 

This method can also be applied to isothermal and non-isothermal diffusion 
data, because the fundamental non-isothermal equation of diffusion is as follows 

[I11: 

D ~  - ~0 (13) 

where V z and ~ are, respectively, a Laplacian operator and the concentration of the 
diffusing species. The reduced time in Eq. (13) is an integral similar to Eq. (9), and 
the diffusion constant, D, is as follows: 

D = O o h ( T )  (14) 

By introducing the initial and boundary equations, we can solve the above Eq. 
(13) similarly to the usual fundamental isothermal equation of diffusion. For 
example, an equation for diffusion and chemical reaction in spherical body (the 
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Serin--Ellickson equation) was recently simplified for kinetic analysis by an 
approximation [12]. The obtained equation of d C/dO is a function dependent only 
on the reduced time, and dC/dt is obtained as follows: 

dC D dC 
- ( 1 5 )  

dt a 2 dO 

where a is the length for the diffusion; for example, it is the radius for spherical and 
cylindrical specimens and the thickness for a plate. Since dC/dO is constant at a 
given conversion, dC/dt is proportional to the diffusion constant, and the kinetic 
analysis can be performed as reported before [11]. 

As is seen above, the Friedman plot for obtaining the temperature-dependence of 
the rate constant (or the activation energy) is not restricted within the linear heating 
and cooling, though it needs both the conversion and the rate ofconversion. Since it 
is applicable to the general kinetic equations, its applicability is not so limited as 
other methods based on the limited equations [9]. Moreover, the plot can be applied 
not only to chemical reactions, but also to the various processes in which a single 
unit process is involved. Thus, it has advantages over the other methods, and it 
should be widely applied to obtain the temperature-dependence of the rate constant 
from various thermoanalytical data, while further kinetic analysis can be performed 
by deriving relations between two quantities among C, dC/dO and 0 from the 
estimated temperature-dependence of the rate constant (or the activation energy) 
and the experimental data on C, dC/dt and the temperature as a function of the time 
[3, 4, I 0, 11, 13]. Among the above relations, the relation between C and dC/dO (or a 
quantity proportional to dC/dO) is easily obtained, because 

d C d C  (AE)  
dO - dt exp ~ (16) 

or  

dC 1 dC 
dO -h(T)  dt (17) 

and the mechanism of the observed process can be elucidated from the relation. 
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Zusammenfassung - -  Durch Erweiterung der urspr~nglichen Gleichung wird gezeigt, dab die Friedman- 
Methode zur Bestimmung der Aktivierungsenergie chemischer Reaktionen unter Verwendung sowohl 
der Konversion als auch der Geschwindigkeit in thermoanalytischen Daten breite 
Anwendungsm6glichkeiten auf dem Gebiet des Wachstums yon Kristallen aus Keimen, der Diffusion 
und anderer aus nur einem Grundproze8 bestehenden Vorg/inge bietet. 

Pe31oMe -- PaculHpelt~leM ilepaonaqaJlbllOFO ypaBHettH~l, rloKa3aHo, qTO MeTOLI (DpI4/1MgHa .,.%;I~/ 
yCTalIOBJIeHH~I 3ucpI'HH aKrHBatlrt~ XI, IMHqeCKHX peaKU.Hl4 C HCl]OJlb3OBaHHeM I~apaMeTpoB 
npenpatttellHa t4 cKopoc'ru B TepMoalta~qHTHqeclcdaX ~q.aHltblX Lt/HpOKO IIpHMeHI, IMO K npotteccy pocra 
Kpncra.q:xoB ~la ocJ,oae cymec-rBylotmlx uenTpoa KpHcqaJl;Ila3alitt~l, K nponeccy ;Iaq~y3rlH r4 ,apyrHM 
npoueccaM, n Korop~x riMeeT MeCTO e:tm~cTBer~mafi npouecc. 
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